Improving the Energy Sensitivity of Massive Calorimeters to Search for Light Mass Dark Matter Matt Pyle University of California Berkeley LBL: Dark Matter Workshop 15/06/08 Light Mass DM Limits: Why So Bad? #### The low-mass WIMP Direct Detection Challenge $$\Delta E = \frac{\Delta P^2}{2M_N} \sim \frac{2M_{DM}^2 v^2}{M_N}$$ Detector Requirement: Amazing Energy Sensitivity #### **CDMSlite** SuperCDMS SNOLAB WIMP Mass $[\text{GeV}/c^2]$ #### **Athermal Phonon Sensors** Collect and Concentrate Phonon Energy into W TES (Transition Edge Sensor) #### Phonon Signal Bandwidth #### Transition Edge Sensor: Dynamics $$\nu_{signal} << \nu_{sensor}$$ #### Transition Edge Sensor: Noise DC noise scales with G ### Bandwidth Optimization Rule $\nu_{sensor} < \nu_{signal}$ #### New: Noise of G23R Test Device #### New: G23R Sensor Bandwidth Why is it taking so long? What are the fundamental limits in phonon resolution? #### Problem #1: Parasitic Power As we lower T_{c_i} we become more sensitive to nuclear recoils, but we also become more sensitive to environmental noise #### Resolution Limits: Parasitic Power SAFARI has created devices with x75 smaller G & x9 smaller P_{bias} than we require | | SuperCDMS
(modeled) | SAFARI
(measured) | |-------------------|----------------------------|----------------------------------| | Тс | 30 mK | 111 mK | | G | 12800 fW/K | 170 fW/K | | P _{bias} | 76 fW | 8.9 fW | | S _{NEP} | 6x10 ⁻¹⁹ W/rthz | 4.2x10 ⁻¹⁹ W/
rthz | We're far from the fundamental limits on phonon resolution due to parasitic power ## Problem #2: W TES Sensitivity Degradation at low T_c ? - As we continue to lower T_c, does the W TES lose sensitivity? Does it become impossible to fabricate? - Who knows? - 100mK -> 50mK sensitivity remained invariant - If yes, there are lots of other TES material out there #### Problem #3: Base Temperature - Dilution Fridge base temperature $< ^70\% T_c$ - Short Term: Definitely an issue for SuperCDMS - UCB 75uW: 35 mK - Long Term: Shouldn't be a problem - New DF at UCB/SLAC/Northwestern/FNAL (10mK) - Queen's DF: 7mK - SNOLAB: Designing for hopefully 15mK #### Summary - We're slowly, but surely, continuing to improve our phonon energy resolution by lowering T_c and improving our environmental shielding. - Currently at $\sigma_{pt} \sim 50 \text{eV}_t$ (Ge)/25eV_t (Si). We have met requirements for SuperCDMS using 75mm detectors, but not yet with a larger 100mm detector. - Over the coming 5 years we hope to really explore the limits of the technology (ER/NR rejection via charge quantization) #### Backup PHYSICAL REVIEW A VOLUME 11. NUMBER 4 APRIL 1975 #### Energy lost to ionization by 254-eV ⁷³Ge atoms stopping in Ge[†] K. W. Jones and H. W. Kraner Brookhaven National Laboratory, Upton, New York 11973 (Received 30 July 1974) A 1-cm³ Ge(Li) γ -ray detector was placed directly in a beam of thermal neutrons where the 72 Ge(n, γ) 73 Ge reaction produced 254-eV 73 Ge recoil atoms in the detector. The primary capture γ rays from the reaction were detected in a 7.6-cm \times 7.6-cm NaI(Tl) detector placed at 90° to the incident beam. In addition to singles measurements a coincidence between the primary capture γ ray and the γ ray or conversion electrons from the decay of the 68.75-keV 73 Ge third excited state was used to search for directional effects in the stopping and to check the value of the recoil energy deduced from the feeding of the 68.75-keV level. The level energy was remeasured and a value of 68.755 \pm 0.005 keV was found, which when combined with the results of previous work gives a value of 68.7535 \pm 0.0043 keV. The amount of energy lost to ionization in the stopping of the 254-eV 73 Ge atom is found from the energy shift in the peak position for the 68.75-keV level. Our measurement of this shift gives a value of 39.2 \pm 5.5 eV, which is then the energy loss to ionization by the stopping of the 254-eV 73 Ge recoil atom. This result is $(27 \pm 3)\%$ higher than the theoretical estimate made from an extrapolation of the Lindhard theory to this energy region. An attempt to observe a dependence of the ionization loss on the recoil direction in the Ge crystal was made, but no positive effect was observed. - Brought to us by Juan - Photon needs to be huge! #### Ge Yield and Lindhard